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1 Summary

The paper (Levy and Goldberg, 2014) analyzes the
skip-gram with negative-sampling (SGNS) word
embedding method and shows that it implicitly fac-
torizes a word-context matrix based on pointwise
mutual information (PMI) of word-context pairs
shifted by a constant. The paper also examines an-
other embedding method called noise-contrastive
estimation (NCE), which is implicitly factorizing a
similar matrix based on log conditional probability
of word given its context. The authors show that
representing words with a sparse Shifted Positive
PMI word-context matrix improves results on word
similarity tasks and one of two analogy tasks. The
paper compares SGNS and exact factorization with
SVD for word similarity tasks and finds that SVD
achieves similar results. However, SGNS remains
superior to SVD for analogy tasks, possibly due to
the weighted nature of SGNS’s factorization.

This document is structured as follows: Section
2 presents significant insights from my viewpoint.
Lastly, Section 3 outlines industrial applications of
SGNS and their implications.

2 Key Insights from the Paper

The three main takeaways from the paper are - the
implicit factorization in SGNS, the comparision of
direct factorization to SGNS, and the effect of neg-
ative sampling on direct factorization v/s SGNS.

2.1 SGNS as Implicit Matrix Factorization

The main idea presented in the paper is that SGNS
can be thought of as an instance of matrix factoriza-
tion. In SGNS, we embed words and contexts into
a low-dimensional space Rd, which gives us matri-
ces W ∈ R(|VW |×d) and C ∈ R(|Vc|×d) where the
rows correspond to the embedding of each word
and context respectively. We can think of W and C
as a factorization of a matrix M = W · CT ,M ∈
R(|VW |×|VC |), where every cell of the matrix M cor-

responds to some association between the words w
and contexts c, which we can denote as f(w, c).

Solving for f(w, c) by assuming a perfect recon-
struction of M (as derived in the paper), we see
that the association can be expressed as:

f(w, c) = log

(
#(w, c) · |D|
#(w) ·#(c)

)
− log k

which is equivalent to the PMI shifted by a con-
stant.

Mi,j = f(wi, ci) = PMI(wi, ci)− log k

where k denotes negative sampling value.
Furthermore, when we relax the assumption of

perfect reconstruction, the optimization becomes a
weighted matrix factorization where the objective
is to seek the optimal d-dimensional factorization
of the matrix M − log k under a metric which pays
more for deviations on frequent (w, c) pairs than
deviations on infrequent ones.

2.2 Comparision of SGNS and Singular Value
Decomposition (SVD)

In the paper, Spectral Dimensionality Reduction
(SDR) is introduced as a method for word embed-
ding based on the SVD factorization of a shifted
PPMI matrix. Table 1 shows the pros and cons of
each approach.

2.3 Effect of negative sampling value k over
SVD and SGNS

In the paper, the empirical results (Figure 1) show
the percentage of deviation from the optimal ob-
jective value for various algorithms and values of
k ∈ {1, 5, 15}.

An important observation: SVD becomes very
erroneous as k increases. This is the result of
increasing sparsity in the matrix. As sparsity in-
creases in the matrix, SVD can become inaccurate
and prefer factorizations close to the zero matrix.



SGNS performs better at higher values of k by giv-
ing more weight to frequent pairs during training,
while SVD treats all matrix cells equally.

Other observations: a) Shifted PPMI is indeed
a near-perfect approximation of the optimal solu-
tion, even though it discards a lot of information
considering only positive cells; b) SVD is slightly
better than SGNS at optimizing the objective for
d ≤ 500 and k = 1. However, while SGNS is able
to leverage higher dimensions and reduce its error
significantly, SVD fails to do so.

3 Application: Recommender Systems

The winners of the Netflix Prize (Prize, 2006) em-
ployed a matrix factorization approach to tackle the
collaborative filtering problem by breaking down
the user-item matrix into low-rank matrices that
capture user and item preferences. Recently, SGNS
has emerged as a potential solution for recom-
mender systems, such as in (Ozsoy, 2016), where
the aim is to find embeddings for users and items
based on co-occurrence of items in the user’s rating
or activity history.

An important problem that SGNS can address is
obtaining embeddings for different types of content
or items. For example, in a music streaming appli-
cation, the SGNS objective can be employed to em-
bed songs into vectors based on user metrics such
as how often songs are played in sequence. The
key advantage of using SGNS in this context is that
it helps solve the cold-start problem. When a new
song is added to the service, we can use averages
or other aggregations of songs in the same genre
as the initial vectors for the new song. Similarly,
we can use SGNS to get embeddings of users and
group users into similar clusters, which is useful
in providing recommendations to new users using
similar aggregations.

Another formulation involves using SGNS to
sample the top-k recommendations from a user-
item PMI. For example, we can create a skip-gram
based model that employs users as input vectors
(words) to predict the most liked movies (con-
text). Instead of using the embeddings, we can
use the distribution to sample the top-k movies to
be recommended to the user. This formulation,
however, presents two challenges. Firstly, due to
the weighted nature of the inherent objective func-
tion in SGNS, the user may only be recommended
movies that are very similar to each other, which
fails to account for diversity in the recommenda-

tions. Secondly, this formulation limits scalability
to new users as the model needs to be retrained
every time a new user is added.

To overcome the second challenge, an alternative
formulation can be employed, where the user-item
interaction itself is embedded to find similar inter-
actions. This is more feasible using autoencoder
models, which also have implicit matrix factoriza-
tions built into them.

4 Tables

SGNS
Pros - SGNS is weighted, and hence prefers correct values for frequent pair (w, c)

and allows more error for non-frequent ones
- SGNS distinguishes between observed and unobserved events
- SGNS does not require the underlying matrix to be sparse one, and this enables

optimization of dense matrix like shifted PMI matrix
Cons - SGNS is a gradient based method hence the solution is not exact

- SGNS training procedures are not feasible for large corpora as it requires each
observation of (w, c) to be presented separately.

SVD
Pros - Exact solution - hence SVD does not require hyperparameter tuning

- Can be easily trained on count-aggregated data, making it scalable to large corpora
Cons - Sparsity is bad, SVD suffers from unobserved values, which are very common,

and result in zero-matrix factorizations
- SVD is unweighted, and solving for exact weighted SVD is a computationally

hard problem
- SVD does not optimize on shifted PMI directly as it is infeasible

Table 1: Pros and Cons of SGNS, SVD

5 Figures

Figure 1: Percentage of deviation from the optimal
objective value (lower values are better).

6 Key points from the discussion

• The paper serves as a valuable reference point
for assessing the interpretability of deep learn-
ing models via mathematical deduction.

• This paper likely inspired exploration of bi-
ases in optimizers like SGD and Gradient de-
scent, and investigate why they favor certain
solutions.
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