
Forward-Forward: Is it time to bid adieu to backprop?

Sai Anuroop Kesanapalli, Shashank Rangarajan, Avtaran Jain, Anukaran Jain
Department of Computer Science
University of Southern California

Los Angeles, CA, USA
{kesanapa, sr87317, anukaran, avtaranj}@usc.edu

Abstract

The aim of this work is to delve deeper into
the Forward-Forward (FF) algorithm (Hinton,
2022) by characterizing and analyzing its per-
formance in comparison to the traditional back-
propagation (backprop) approach. The FF algo-
rithm achieves accuracies on par with backprop
on benchmark datasets but showcases deteri-
orating performance as the complexity of the
dataset increases. Furthermore, FF is as effi-
cient as backprop in terms of system perfor-
mance. However, popular backprop architec-
tures such as CNN and Self-Attention do not
work well with FF due to their inherent struc-
tural biases. Despite this, FF requires lesser
number of samples to achieve similar accuracy
as that of backprop and has a more stable per-
formance than the latter, showing promise for
further investigation into this novel approach.

1 Introduction

Back-propagation (Hinton et al., 1986) has been at
the forefront of various machine learning innova-
tions, allowing for the creation of semi-intelligent
tools such as ChatGPT, Alexa, DALL-E, and many
more. Despite its success, the algorithm comes
with its own set of limitations (Hinton, 2022). In
general, backprop training is highly memory inten-
sive as it relies on the activations computed during
the forward pass that are retained in memory to cal-
cluate the gradients in the backward pass. This is
where FF might offer an advantage by not requiring
storage of activations and iterations of backward
pass during training.

In our work, we delve deeper into understanding
the following question - does FF offer any advan-
tages over backprop when working with varying
datasets and architectures? In particular, the above
question is answered through the following steps:

1. Comparing performance of baseline FF and
backprop models on datasets of increasing
complexity

2. Integrating FF with other popular architec-
tures such as Convolutional Neural Networks
(CNN) (Krizhevsky et al., 2017) and Self At-
tention (Vaswani et al., 2017)

3. Exploring whether FF acts as a good initializer
for backprop and vice-versa

4. Analyzing the system performance of FF and
backprop

5. Analyzing sample complexity of FF vs back-
prop

We have discovered that although basic FF algo-
rithm performs on-par with backprop on simpler
datasets, more complex architectures such as CNN
and Self-Attention do not perform well with FF
due to their weight-sharing nature (Hinton, 2022).
Additionally, we have discovered that FF and back-
prop are fundamentally different, making it less
appealing to integrate one with the other. However,
our experiments have shown that both approaches
have similar system performance based on the met-
rics we have gathered during model training. More-
over, when using varying dataset subsamples, FF
has demonstrated more stable performance than
backprop.

Our paper is organized as follows: We first ex-
plain the relevant background (Section 2). Next,
we glance at the works that have explored FF, as
well as the ones that have influenced the algorithm
(Section 3). We then describe our methodology
(Section 4), and detail our experiments with their
nuances, discussing the results (Section 5). Finally,
we conclude (Section 6) and outline future works
(Section 7).

2 Background

2.1 Back-propagation

Back-propagation (backprop), is a widely-used al-
gorithm in training neural networks. Its break-
through lies in its ability to enable the optimization
of models with many layers, by computing the gra-

dients of each parameter with respect to the loss
function. This is done by propagating the errors
from the output layer back to the input layer, hence
the name back-propagation. The key idea is to
apply the chain-rule in calculus to compute the gra-
dients at each layer, by multiplying the gradients
of the layer ahead with the local gradients of the
current layer. These gradients are then used to up-
date the model parameters using gradient descent.
Backprop is computationally efficient because it
stores the gradients and activations, and only needs
to compute the gradients once, which can then be
reused during the optimization process.

2.2 Forward-Forward
The core idea behind the FF algorithm is to use two
forward passes, one with positive (real) data and
the other with negative (generated) data. Instead of
computing the gradients with respect to the global
loss, every layer has its own objective function
called the goodness metric. This allows for the
training of every layer in a neural network to be
done separately. During training, the weights of
each layer are adjusted to increase the goodness
value above a specified threshold in the positive
pass, while the opposite is done in the negative
pass. In our experiments throughout, the sum of
squared activities is used as the goodness function.

2.3 Goodness metric
Suppose that the goodness function for a layer is the
sum of the squares of the activities of the rectified
linear neurons in that layer. Goodness should be
well above some threshold value θ for real data and
well below that value for negative data. The aim is
to correctly classify input vectors as positive data
or negative data based on the probability derived
by the following logistic function (Hinton, 2022):

p(positive) = σ
(∑

j

y2j − θ
)

p(negative) = σ
(
θ −

∑
j

y2j

)
where yj is the activity of hidden unit j before layer
normalization. This threshold θ becomes a hyper-
parameter that can be tuned for better performance.

2.4 Method to produce positive and negative
samples

In FF, a positive datum belongs to the training
dataset whereas a negative datum is adversarially

Figure 1: overlay method snippet

Figure 2: Original, positive, and negative samples

generated to ensure that the model learns con-
trastively. An easy way to generate the negative
data is to mislabel the training samples. We do
this using the overlay method in Figure 1, and a
sample visualization for an MNIST image is shown
in Figure 2.

3 Related Works

In 3.1, 3.2, 3.3, 3.4 we present an overview of
recent line of works related to FF which help us
understand the present status of FF and get an idea
about the open challenges that FF poses. In 3.5 we
present a few system performance and ML bench-
marking works that we draw inspiration from, to
aid in our analysis of FF from a practical perspec-
tive.

3.1 Forward-Forward

FF is a novel idea and not a lot of work has been
done with regards to exploring the potential bene-
fits and drawbacks of using this algorithm. More-
over, there has been a growing interest in the search
of alternatives to backprop, especially in scenar-
ios related to low system analog devices. (Hinton,
2022) explores the feasibility of the FF approach
when compared to backprop and shows that FF per-
forms nearly as well as backprop when dealing with
simple multi layer neural networks. However, the
paper does not dive deeper into the pros and cons of
this approach, when looking at varying models and
architectures. We attempt to reproduce the results
demonstrated in the paper, as well as gauge the
effectiveness of the proposed approach when deal-
ing with hybrid models and its compatibility with
popular backprop-based architectures such as CNN
and Self-Attention. In addition to these, we delve
deeper into the system performance comparison of
FF vs backprop in this work.

3.2 Activation Learning

(Zhou, 2022) presents the activation learning
paradigm as an alternate framework to backprop,
which though is very similar to the FF algorithm
proposed by (Hinton, 2022), differs in the way
weights are updated. There is an abundance of com-
parison between activation learning and backprop
present in this work. We referred to these com-
parisons and formulated our own juxtapositions
between FF and backprop algorithms, analyzing
the results for further insights.

3.3 Local Activity Contrastive algorithm

(Zhu et al., 2022) propose Local Activity Con-
trastive (LAC) algorithm to learn auto-encoders.
The idea behind the paper is to use loss functions
in every layer of the neural network to replicate
locality. Particularly, when learning the difference
between activations of two inputs, an original im-
age and an reconstructed image each are minimized.
The above is done using two forward passes. LAC
is also shown to be beneficial as a pre-training
method for Convlutional Neural Networks (CNN),
and is what inspired us to delve deeper into a hy-
brid learning model that uses both backprop and
FF.

3.4 Extensions to FF

Lastly, other studies such as those of (Ororbia and
Mali, 2023) utilize FF algorithm as a tool to pro-
pose new learning paradigms as generalizations.
However, these papers do not perform a direct and
detailed analysis between FF and backprop.

3.5 System Performance Metrics and
Benchmarking

Benchmarking of Deep Learning (DL) models
along with analyzing the system behaviour dur-
ing the training and inference phases is a crucial
step in profiling these models. In many cases, these
models run on edge-accelerators which have lim-
ited power budget (Khochare et al., 2022). Further,
these devices are constrained by CPU and GPU
computational power, hence it is crucial to see how
extant and new DL models behave in light of these
considerations.

Typically, E2E runtime, CPU and GPU utiliza-
tion and memory consumption (Liu et al., 2019),
power and energy consumption (Holly et al., 2020)
are logged by several works. (Beutel et al., 2020)
report training times, energy, CPU running time

with respect to the federated learning framework
they propose.

(SK et al., 2022) do a detailed system profiling of
Nvidia Jetson edge accelerators during the training
phase of various deep learning models. In partic-
ular, they log E2E time, stall time, GPU compute
time, CPU and GPU frequencies, energy consump-
tion, average socket power load as part of their
study. However, their work is Jetson-specific and
the results may not be universally applicable.

MLPerf (Mattson et al., 2020) is a community-
driven effort which provides a unified platform for
measuring the performance of ML hardware and
systems. It is a benchmark suite with one of its
major objectives being that it enables a fair com-
parison between candidate systems. To this end,
they assorted a representative set of tasks from
several major ML areas, spanning from vision, lan-
guage, recommendation, to reinforcement learning.
Further, for each benchmark, they chose quality
metrics close to the state of the art for the corre-
sponding model and data set. While this is a very
detailed work, it does not measure low-level sys-
tem metrics. However, this work sets the tone for
creating a similar platform for fair comparison of
FF vs backprop based methods.

4 Methodology

(Hinton, 2022) explores the feasibility of the FF ap-
proach when compared to backprop and shows that
FF performs nearly as well as backprop when deal-
ing with simple feed-forward multi-layer neural
networks. In our first experiment, we reproduced
the results demonstrated in the paper (Table 1). Ad-
ditionally, we experimented with various datasets
(Section 4.1) and gauged the system metrics (Sec-
tion 4.2) for both FF and backprop. In our second
experiment we explored the efficacy of a hybrid
FF-backprop framework. Our intuition here was to
verify if FF could act as a good weight initializer
for backprop and vice-versa. Finally, in our third
experiment, we attempted to implement more com-
plex architectures like CNN and Self-Attention to
see if, similar to backprop, FF also benefited from
these architectural inductive biases. The model ar-
chitectures for these experiments are discussed in
Section 4.3.

4.1 Datasets

For our experiments, the following 5 vision datasets
were used – MNIST (LeCun et al., 2010), Fash-

ionMNIST (Xiao et al., 2017), CIFAR10, CI-
FAR100 (Krizhevsky, 2009) and SVHN (Netzer
et al., 2011).

4.2 Metrics Logged
The following types of system performance metrics
were analyzed:
Time based metrics: E2E_time measures end-
to-end time for training the model. epoch_time
measures the time taken for training per epoch.
GPU_compute_time measures the time during
which training occurs on GPU. For time logging
purposes, we used torch.cuda.Event in conjunc-
tion with torch.cuda.synchronize().
Utilization based metrics: GPU_utilization
measures percent of time over the past sample pe-
riod during which one or more kernels was exe-
cuting on the GPU, memory_usage measures the
ratio of the used to total available GPU memory,
memory_utilization logs percent of time over
the past sample period during which device mem-
ory was being read or written, power_drawn mea-
sures the last measured power drawn for the entire
board, in watts (Nvidia, 2016).

4.3 Model Architectures
baseline_ff_model: We used the code on
GitHub (Pezeshki, 2023) as our foundation, and
made modifications to build the baseline models
described in (Hinton, 2022). This model contains 4
fully connected layers with 2000 ReLUs. We also
added relevant Dataloader for different datasets
4.1. Furthermore, for CIFAR100, we modified the
overlay function to include a one-hot encoded
label representation in the first 100 pixels of the
image.
baseline_backprop_model: Since FF and back-
prop are two distinct algorithms , we decided to
create architectures that catered to each algorithm
differently. As a result, the backprop implemen-
tation consisted of a three layer neural net [input
→ 75 → 50 → num_classes] for SVHN, and
[input → 250 → 110 → num_classes] for
remaining datasets.
hybrid_model: The architecture of this model
was dependent upon what algorithm was used for
fine-tuning. If we used backprop as a weight
initalizer, the architecture was similar to that of
baseline_ff_model (4.3). On the other hand, if
we used FF as a weight initalizer, the architecture
was similar to that of baseline_backprop_model
(4.3).

baseline_CNN_model: We adapted the same
code (Pezeshki, 2023) to create custom classes
like Convolutional_layer, MaxPool_layer, and
Flatten_layer. These layers were similar to their
traditional implementation with the addition of
a goodness objective in the convolutional layer.
Together, these classes were used to create the
forward forward CNN implementation. The cus-
tom CNN model consisted of four layers. The
first two layers were convolutional layers, each
followed by max pooling and flattening. The
last two layers were linear layers similar to the
baseline_ff_model (4.3).
baseline_attention_model: We created an
Attention_Layer by first chunking the input im-
ages into patches, feeding the patch embeddings
into a nn.MultiHeadedAttention layer and fi-
nally passing them to a nn.Linear layer. The out-
puts of the attention layer was fed into the later
layers of the baseline_ff_model (4.3)

5 Experiments and Results

Most of these experiments were carried out on
Google Colab environment with standard GPU al-
location and a few were replicated on USC CARC
v100 compute nodes. We report the experiment
results based on Google Colab execution only.

5.1 Comparison of Baseline FF with backprop
The goal of this experiment was to establish a base-
line comparison between FF and backprop in their
best modes of performance, and to analyze the sys-
tem performance.

5.1.1 Setup
For the best performance mode in FF, we trained
the baseline_ff_model (4.3) with 60 epochs for
each layer. Here, an epoch means that the FF
algorithm has seen the entire train dataset once.
We used a batch size of 512 for both train and test.
The training happens layer-wise – the first layer
gets trained for 60 epochs followed by the second
layer, and so on. Adam optimizer was used with a
learning rate of 0.02 for each layer and the sum of
squared activities as the goodness function. The
threshold here was a hyperparameter which was
finetuned for each dataset and we finally settled on
a value of 15 for MNIST, 10 for FashionMNIST,
SVHN, CIFAR10, and 1 for CIFAR100.

For backprop, we trained the
baseline_backprop_model (4.3) for 20 epochs
and used a batch size of 256 across the datasets for

both train and test. We utilized the cross entropy
loss and the Adam optimizer with a learning rate
of 6.7e−3. In this report, we present the best
operating mode of these backprop models, as
a result of which all but one of these models,
corresponding to SVHN dataset, have the same
architecture (Section 4.3).

5.1.2 Results
Accuracies: As seen from Table 1, FF performs
at par with backprop for simple datasets such as
MNIST and FashionMNIST. However, it lags be-
hind backprop on more complex datasets such as
CIFAR10, CIFAR100 and SVHN. Moreover, from
the train accuracies (Table 1), it is evident that FF
does not overfit the dataset as much as backprop
does, i.e., it acts as an implicit regularizer.
E2E and GPU Compute times: From Figure 3, it
can be observed that E2E times are similar for FF
and backprop. For CIFAR100, the GPU Compute
times for all but one layers of FF and backprop are
quite similar, at around ∼ 1 sec. This is due to
the higher number of parameters in the first layer,
when compared to the rest. A similar observation
has been made for CIFAR10 and SVHN datasets
as well.
Memory usage and Power drawn: From Figure
4, it is observed that FF has higher memory usage
than backprop. We attribute this to the way we
have handled memory in our implementation of FF,
which is not as efficient as the built-in implemen-
tation for backprop. Next, we observe that power
drawn is similar for FF and backprop, except that
the distribution for FF is not that tight, which can be
attributed to the difference in the power consump-
tion during per layer training and pre-processing
phase.

5.2 Hybrid FF + backprop

Our goal here was to verify whether FF and back-
prop based approaches sync-well with each other,
i.e. to test whether FF acts as a good initializer
for backprop and vice-versa. Thus, we created a
hybrid model and trained it in two directions.

5.2.1 Setup
First, we trained the hybrid_model (4.3) with FF
for 60 epochs, and finetuned it with backprop for
20 epochs with a reduced learning rate of 1e−4.
Next, we trained another hybrid_model with back-
prop for 20 epochs and finetuned it with FF for 60
epochs with a reduced learning rate of 1e−3.

5.2.2 Results
We observed a poor performance in both these ex-
periments with accuracies ranging ∼ 10%. The
model initialized with FF started with a very high
training loss of the order 1e3 and could not be re-
duced significantly through the epochs. Similarly,
the performance of the model, initialized by back-
prop and finetuned with FF, was just as bad. This
could be attributed to the nature of objective func-
tions of FF and backprop which do not gel well
together.

5.3 Exploring FF with popular architectures

In this experiment, we wanted to explore the feasi-
bility and efficacy of FF with popular architectures
such as CNN and Self-Attention.

5.3.1 Setup
We trained baseline_cnn_model (4.3) on MNIST
dataset using FF, for 1000 epochs, with a learn-
ing rate of 0.02. Furthermore, we trained the
baseline_attention_model (4.3), for 60 epochs
per layer, with learning rates 1e−3, 0.02 for
nn.MultiHeadedAttention and nn.Linear lay-
ers respectively.

5.3.2 Results
For the CNN model, we observed poor perfor-
mance (∼ 10% accuracy), which confirms Hinton’s
conjecture that weight sharing is not feasible in FF,
rendering CNNs ineffective.

For the attention based model, we saw a signifi-
cant improvement over our CNN model (∼ 60% ac-
curacy), however this was not comparable to base-
line FF. We think this is mainly due to the way our
overlay function is implemented. The overlay func-
tion passes the label information in the first few
pixels of the image during training, and thus the
baseline model learns to correlate this label with the
rest of the image. However for the attention model,
the label passed, gets split into patches and only
one of the patches gets the label. Therefore, we
think that sharing the label information with each
patch could possibly boost the performance of the
attention based model. We leave this exploration
for future works (Section 7).

5.4 Comparison of FF with Linear and
Attention Layers

Despite attention model not performing as well as
the baseline model, we gauged the difference in
system performance caused by the attention layer.

5.4.1 Setup
We trained baseline_ff_model (4.3) and
baseline_attention_model (4.3) with FF on
different datasets and logged the system metrics.
Hyperparameters remain the same as in sections
5.1.1 and 5.3.1.

5.4.2 Results
GPU Utilization and Compute times: From
Figure 5, for CIFAR100, we see that GPU
Utilization for baseline_ff_model is unimodal
(with one mode/lobe) whereas it is bimodal for
baseline_attention_model. This can be at-
tributed to larger GPU Compute times (hence uti-
lization) for the attention layer. Moreover, we di-
rectly correlate these results with GPU Compute
time plots to gain a more holistic view (5c, 5d).
From the graphs, we observe that the lower lobe
(5a, 5b) is concentrated around the same value
(∼ 35%) for both models, since the remaining lay-
ers are the same across these two models. Further,
we observed similar results for all datasets.
Memory Utilization: Next, with regard to Mem-
ory Utilization, we observe a similar bimodal trend
for baseline_attention_model, as can be seen
for MNIST and CIFAR10 datasets in Figure 6. We
explain this using a similar argument as done for
GPU Utilization.
Power drawn: From Figure 7, for SVHN, we see
that the power drawn is similar for both these mod-
els, but again note the prominent second lobe for
baseline_attention_model (7b). A ready com-
parison of this with the time-series plot (7d) gives
us the insight that this second lobe is due to the
attention layer in baseline_attention_model
which consumes higher power while training when
compared to the linear layers. We conclude that
even in architectures such as FF, training attention
layer requires significantly more power than the
linear ones. There is similar trend in results across
datasets.

5.5 Comparison of Sample Complexity
between FF and backprop

For this experiment we wished to explore how num-
ber of samples affects the performance of a given
model trained with FF and backprop.

5.5.1 Setup
We varied dataset size by random subsampling,
starting from the full train and test size for a given
dataset, moving towards a minimum of 1000 train

and test samples, in steps. This was done to ex-
plore the complexity across a spectrum of practical
dataset sizes.

5.5.2 Results
From Tables 2 and 3 we observe that although FF
performs slightly worse than backprop, it requires
lesser number of samples to achieve similar ac-
curacy as that of backprop and has a more stable
performance when compared with backprop. By
stability we imply that FF neither overfits nor un-
derfits the subsampled datasets, while backprop
overfits larger subsamples and underfits smaller
subsamples. We proffer this as the major advan-
tage that FF has over backprop.

6 Conclusion

In this work, we performed a principled perfor-
mance comparison between FF and backprop in
terms of accuracy and system metrics logged. We
explored the feasibility of FF acting as a weight
initializer for backprop and vice-versa. We then
trained popular backprop architectures such as
CNN and Self-Attention with FF, and examined
the practicality of such implementations. More-
over, we compared the system performance of FF
with Linear layers against its implementation with
Self-Attention layers, and noted their differences.
Finally, we compared the sample complexity be-
tween FF and backprop, and highlighted why FF
has an edge over backprop.

7 Future works

We enlist the following avenues that can be ex-
plored as future work:

1. The layers of FF can be trained in a paral-
lel manner rather than sequentially (Hinton,
2022), which could lead to better efficiency

2. Overlay information can be fed into each
patch of the attention layer, which may im-
prove performance

3. Different implementations of overlay can be
tested that could improve performance of FF
as a whole

4. The sensitivity of accuracy to threshold, and
activation functions can be further investi-
gated

MNIST FashionMNIST SVHN CIFAR10 CIFAR100
FF 97.31 | 97.14 87.63 | 85.95 82.32 | 76.28 54.85 | 49.24 19.93 | 13.63

backprop 99.94 | 98.04 94.67 | 89.43 86.38 | 80.52 81.48 | 53.88 52.21 | 23.75

Table 1: Train | Test Accuracies (%) of FF and backprop

Train | Test Samples 60k | 10k 50k | 10k 40k | 10k 30k | 10k 20k | 10k 10k | 10k 5k | 5k 1k | 1k
MNIST 97.23 | 96.79 96.62 | 96.41 95.62 | 95.16 94.05 | 94.02 90.48 | 90.68 74.88 | 74.70 37.78 | 38.08 9.10 | 11.20

FashionMNIST 86.98 | 85.56 86.01 | 84.22 84.62 | 83.06 83.37 | 81.35 79.69 | 78.32 69.22 | 68.32 44.44 | 44.70 9.10 | 8.50
CIFAR10 - 48.77 | 45.52 45.27 | 42.49 40.73 | 38.73 34.83 | 34.02 27.69 | 27.82 17.42 | 16.46 12.90 | 12.50
CIFAR100 - 2.40 | 2.05 - - - - - -

Train | Test Samples 73k | 26k 63k | 26k 53k | 26k 43k | 26k 26k | 26k 13k | 13k 3k | 3k 1k | 1k
SVHN 68.15 | 64.15 62.37 | 58.17 48.45 | 46.27 45.73 | 42.30 25.97 | 25.60 10.89 | 11.82 9.21 | 9.39 7.63 | 7.87

Table 2: Train | Test Accuracies (%) of FF for various number of samples

Train | Test Samples 60k | 10k 50k | 10k 40k | 10k 30k | 10k 20k | 10k 10k | 10k 5k | 5k 1k | 1k
MNIST 99.83 | 97.66 82.71 | 97.54 66.66 | 97.89 49.99 | 97.56 33.32 | 97.19 16.64 | 95.69 8.31 | 46.83 1.65 | 8.89

FashionMNIST 95.32 | 89.21 79.56 | 88.95 63.47 | 88.21 46.90 | 86.92 30.96 | 85.92 15.56 | 85.88 7.79 | 42.09 1.55 | 8.00
CIFAR10 - 83.81 | 52.98 67.81 | 52.67 51.93 | 50.00 35.47 | 47.61 17.49 | 44.44 9.50 | 20.62 1.89 | 3.60
CIFAR100 - 55.87 | 23.91 47.21 | 22.79 37.20 | 21.37 27.57 | 18.93 14.44 | 16.41 8.50 | 7.13 1.86 |0.84

Train | Test Samples 73k | 26k 63k | 26k 53k | 26k 43k | 26k 26k | 26k 13k | 13k 3k | 3k 1k | 1k
SVHN 87.35 | 81.00 75.61 | 80.66 61.65 | 77.18 50.91 | 78.19 30.54 | 76.31 15.42 | 37.11 3.64 | 7.48 1.36 | 2.35

Table 3: Train | Test Accuracies (%) of backprop for various number of samples

(a) FF | E2E time (b) backprop | E2E time (c) FF | GPU Compute time (d) backprop | GPU Compute time

Figure 3: FF vs backprop

(a) FF (b) backprop (c) FF (d) backprop

Figure 4: Memory usage

(a) Linear | GPU Util. (%) (b) Attention | GPU Util. (%) (c) Linear | GPU Comp. time (d) Attention | GPU Comp. time

Figure 5: FF with Linear vs Attention Layers | GPU Utilization and Compute time

(a) Linear | Mem. Util. (%) (b) Attention | Mem. Util. (%) (c) Linear | Mem. Util. (%) (d) Attention | Mem. Util. (%)

Figure 6: FF with Linear vs Attention Layers | Memory Utilization

(a) Linear | Power (W) (b) Attention | Power (W) (c) Linear | Power (W) (d) Attention | Power (W)

Figure 7: FF with Linear vs Attention Layers | Power Drawn

References
Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi

Qiu, Titouan Parcollet, Pedro PB de Gusmão, and
Nicholas D Lane. 2020. Flower: A friendly feder-
ated learning research framework. arXiv preprint
arXiv:2007.14390.

Geoffrey Hinton. 2022. The forward-forward algorithm:
Some preliminary investigations. arXiv preprint
arXiv:2212.13345.

Geoffrey E Hinton, Terrence J Sejnowski, et al. 1986.
Learning and relearning in boltzmann machines. Par-
allel distributed processing: Explorations in the mi-
crostructure of cognition, 1(282-317):2.

Stephan Holly, Alexander Wendt, and Martin Lechner.
2020. Profiling energy consumption of deep neural
networks on nvidia jetson nano. In 2020 11th Interna-
tional Green and Sustainable Computing Workshops
(IGSC), pages 1–6.

Aakash Khochare, Sai Anuroop Kesanapalli, Rahul
Bhope, Yogesh Simmhan, et al. 2022. Don’t miss
the train: A case for systems research into training
on the edge. In 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops
(IPDPSW), pages 985–986. IEEE.

Alex Krizhevsky. 2009. Learning multiple layers of
features from tiny images. Technical report.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2017. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60(6):84–90.

Yann LeCun, Corinna Cortes, and CJ Burges. 2010.
Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2.

Jie Liu, Jiawen Liu, Wan Du, and Dong Li. 2019. Per-
formance analysis and characterization of training
deep learning models on mobile device. In 2019
IEEE 25th International Conference on Parallel and
Distributed Systems (ICPADS), pages 506–515.

Peter Mattson, Christine Cheng, Gregory Diamos, Cody
Coleman, Paulius Micikevicius, David Patterson,
Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bit-
torf, et al. 2020. Mlperf training benchmark. Pro-
ceedings of Machine Learning and Systems, 2:336–
349.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y Ng. 2011. Reading
digits in natural images with unsupervised feature
learning.

Nvidia. 2016. nvidia-smi.txt.

Alexander Ororbia and Ankur Mali. 2023. The pre-
dictive forward-forward algorithm. arXiv preprint
arXiv:2301.01452.

Mohammad Pezeshki. 2023. Moham-
madpz/pytorch_forward_forward: Implementation
of hinton’s forward-forward (ff) algorithm - an
alternative to back-propagation.

Prashanthi SK, Sai Anuroop Kesanapalli, and Yogesh
Simmhan. 2022. Characterizing the performance
of accelerated jetson edge devices for training deep
learning models. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 6(3):1–
26.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017.
Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms.

Hongchao Zhou. 2022. Activation learning by local
competitions. arXiv preprint arXiv:2209.13400.

He Zhu, Yang Chen, Guyue Hu, and Shan Yu. 2022.
Contrastive learning via local activity. Electronics,
12(1):147.

8 Acknowledgements

We thank Prof. Jesse Thomason, and the CSCI 566
staff, in particular, Deqing Fu, for their constant
guidance and support throughout the duration of
this work.

9 Code

Notebooks for various experiments performed in
this work can be found at https://github.com/
ksanu1998/ff.

https://doi.org/10.1109/IGSC51522.2020.9290876
https://doi.org/10.1109/IGSC51522.2020.9290876
https://doi.org/10.1109/ICPADS47876.2019.00077
https://doi.org/10.1109/ICPADS47876.2019.00077
https://doi.org/10.1109/ICPADS47876.2019.00077
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://github.com/mohammadpz/pytorch_forward_forward
https://github.com/mohammadpz/pytorch_forward_forward
https://github.com/mohammadpz/pytorch_forward_forward
https://github.com/mohammadpz/pytorch_forward_forward
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/cs.LG/1708.07747
http://arxiv.org/abs/cs.LG/1708.07747
https://github.com/ksanu1998/ff
https://github.com/ksanu1998/ff

Individual Contributions

Final report: Equal contributions
Code:

• SR, SAK - Implementing baseline FF
• KJ, AJ - Implementing backprop
• SAK, KJ - Implementing logging harness,

plotting
• SAK, SR, AJ, KJ - Experimenting with

datasets
• SR, AJ - Implementation of hybrid model
• AJ, KJ - Implementing baseline CNN
• SR, SAK - Implementing Attention model and

comparision experiments
• SAK, SR - Sample complexity

Code, sections and parts of the report not listed
above were equally contributed by all the members.

Name Legend:
SAK - Sai Anuroop Kesanapalli,
SR - Shashank Rangarajan,
KJ - Anukaran Jain,
AJ - Avtaran Jain

